Volume entropy and integral Ricci curvatures over closed geodesics
نویسندگان
چکیده
منابع مشابه
Loop Products and Closed Geodesics
The critical points of the length function on the free loop space Λ(M) of a compact Riemannian manifold M are the closed geodesics on M. The length function gives a filtration of the homology of Λ(M) and we show that the Chas-Sullivan product Hi(Λ)×Hj(Λ) ∗ Hi+j−n(Λ) is compatible with this filtration. We obtain a very simple expression for the associated graded homology ring GrH∗(Λ(M)) when all...
متن کاملLower bounds on Ricci flow invariant curvatures and geometric applications
We consider Ricci flow invariant cones C in the space of curvature operators lying between nonnegative Ricci curvature and nonnegative curvature operator. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to Ricci flow has its curvature operator which satsisfies R+ε I ∈ C at the initial time, then it satisfies R+Kε I ∈ C on some time interval depen...
متن کاملAverage Curvatures of Weil-Petersson Geodesics In Teichmüller Space
Every point in Teichmüller space is a hyperbolic metric on a given Riemann surface, therefore, a Weil-Petersson geodesic in Teichmüller space can be viewed as a 3-manifold. We investigate the sectional curvatures of this 3-manifold, with a natural metric. We obtain explicit formulas for the curvature tensors of this metric, and show that the “average”s of them are zero, and hence the geometry o...
متن کاملStability of Closed Timelike Geodesics
The existence and stability under linear perturbations of closed timelike geodesics (CTG) in Bonnor-Ward spacetime is studied in some detail. Regions where the CTG exist and are linearly stable are exhibited. In 1949 Gödel found a solution to the Einstein field equation with nonzero cosmological constant that admits closed timelike curves (CTC) [1]. It could be argued that the Gödel solution is...
متن کاملOn The Closed Geodesics Problem
In this paper we review some important results on the closed geodesics problem for compact Riemannian manifolds, as the Gromoll-Mayer Theorem, and discuss some extension of those results to the case of Finsler and semi Rimannian manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2007
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-07-08869-7